Dust Polarization in the Microwave: Challenges on the Quest for B-Modes

Brandon Hensley
Jet Propulsion Laboratory,
California Institute of Technology

In collaboration with Bruce Draine (Princeton) Aaron Meisner (LBL)

© 2016 All Rights Reserved

INPA Seminar January 29, 2015

The Quest for Primordial B-Modes

Credit: ESA/Planck

The Microwave Sky in Intensity

Planck 2015 X

Why is Dust Emission Polarized?

Two ingredients required:

Grains must be aspherical

② Grains must be aligned

Grain Shape

Grain Alignment

Grain Alignment

Grain Alignment

Grain spins about \vec{J} \vec{J} systematically aligns with \vec{B}

The Microwave Sky in Polarization

Planck 2015 X

Key Questions

 Could the AME be polarized? (and do we really know what it is?)

 What is the frequency-dependence of the dust polarization? Is it the same as total intensity?

Part I

PAHs and the AME

 Hensley, Draine, and Meisner 2015. Submitted to ApJ arXiv:1505.02157

Anomalous Microwave Emission

 Discovery of a dustcorrelated "bump" in emission (Kogut et al 1996, Leitch et al 1997, de Oliveira-Costa et al 1997)

Planck Collaboration 2011

Spinning Dust Physics

- AME can be explained by spinning dust grains (Draine & Lazarian 1998ab)
- Very small grains (e.g. PAHs) can get spun up by gas collisions, radiative torques, and other processes
- If grains have a dipole moment, this rotation causes them to radiate

Credit: Yacine Ali-Haïmoud

PAHs

- Attractive
 AME carrier
 because they
 are small and
 ubiquitous
- Abundance traced by IR emission features at 8 and 12

 mm

Spinning Dust Emissivity

Galactic spinning dust emissivity

$$j_{\nu, 30 \text{ GHz}}/n_H = 3 \times 10^{-18} \text{ Jy cm}^2 \text{ sr}^{-1} \text{ H}^{-1}$$

Emissivity per PAH fairly robust to environmental conditions, so assume a linear scaling with Σ_{PAH}

$$I_{\nu, 30 \text{ GHz}}^{\text{AME}} = 1.0 \left(\frac{\Sigma_{\text{PAH}}}{M_{\odot} \, \text{kpc}^{-2}} \right) \, \, \text{Jy sr}^{-1}$$

Spinning Dust Theory

Warning: Reality may not be so simple

Full-Sky Test of the Spinning PAH Hypothesis

Full-sky maps of the AME derived from component separation of the microwave sky by *Planck* let us test the AME-PAH connection in detail.

Introduction

$$I_{\nu} = \tau_{\nu} B_{\nu} (T_{d})$$
$$\tau_{\nu} = \kappa_{\nu} M_{d}$$

Planck 2015 X

Planck 2013 XI

Meisner & Finkbeiner 2014

Model Predictions

- 1 Linear correlation with τ_{353}
- 2 Even tighter correlation with $f_{\rm PAH} au_{353}$
- 3 No strong correlation with radiation field

Correlation with τ_{353}

Model Predictions

- ✓ Linear correlation with τ_{353}
- 2 Even tighter correlation with $f_{\rm PAH} au_{353}$
- 3 No strong correlation with radiation field

Correlation with $f_{\rm PAH}\tau_{353}$

Model Predictions

- ✓ Linear correlation with τ_{353}
- X Even tighter correlation with $f_{\rm PAH} au_{353}$
- 3 No strong correlation with radiation field

Correlation with R

Model Predictions

- ✓ Linear correlation with τ_{353}
- X Even tighter correlation with $f_{\rm PAH} au_{353}$
- X No strong correlation with radiation field

A Further Test

Does PAH abundance explain fluctuations in AME/R?

Correlation with $f_{PAH}R$

• f_{PAH} does **NOT** improve the correlation with ${\cal R}$

Alternate Models

• What are our next-best theories?

Magnetic Nanoparticles

- Emissivity per unit volume of 0.01μm grains heated to 18K
- Emissivity in mm and sub-mm much stronger than amorphous silicate grains

Draine and Hensley 2013

Introduction

- Not great at reproducing the shape of the SED
- Emission would likely be strongly polarized, in conflict with observations

Spinning Non-PAHs

- Still spinning dust, just not PAHs
- Not clear whether including a sufficient number of ultrasmall grains of a different type (e.g. silicates) would violate other constraints (e.g. UV extinction)

No Spinning PAH Emission?

- Invoking alternate explanation still requires asking why the PAHs aren't producing significant spinning dust emission
- Electric dipole moments overestimated?

Conclusions

- No apparent link between AME and PAHs, other carriers and other mechanisms should be (re)considered
- New data is needed to better separate AME from other emission
- Major blind spot in our knowledge of Galactic microwave emission

 – puzzle needs to be solved!

Introduction

 New Models of Interstellar Dust (with Polarization!)

• Hensley & Draine 2016. In prep.

Big Picture

- Grains producing polarized emission in the IR are the same grains that produce polarized extinction in the optical
- Use multi-wavelength data to construct a physical model of dust compatible with the observations

Method

- Collect latest observations on dust in diffuse ISMextinction (total and polarized), emission (total and polarized), and abundances
- 2 Identify candidate grain materials, grain shapes, and grain sizes that can reproduce the observations
- 3 Assess the observational consequences of different models

Composition Effects

Grains are of different composition appear to have different polarization properties

Carbonaceous Features

– Unpolarized

Composition Effects

"We find that fitting a single modified blackbody component for the thermal dust where the "real" sky should account for two dust components may strongly bias the estimation of the tensor-to-scalar ratio by more than 5σ "

- Remazeilles et al 2015

Observational Constraints

What observations does a successful dust model need to reproduce?

Emission Constraints

Extinction Constraints

Draine and Fraisse 2009

- Used Draine and Li dust materials to make predictions for polarized emission in the Planck bands
- Model predicts too much extinction per unit emission (Planck Int XXIX 2014)

Polarized Dust Emission

- Models with silicate and carbonaceous grains alone have difficulty reproducing the observed decline in the polarization fraction with increasing wavelength
- A new ingredient

 magnetic nanoparticles

Magnetic Nanoparticles

Introduction

Example

- 2:1 spheroidal silicate grains with 5% iron nanoparticles by volume as inclusions
- Unaligned carbonaceous grains
- PAHs

Emission

Extinction

Polarized Extinction

Polarized Emission

Polarization Fraction

Summary

- Inclusion of iron grains allows us to match the frequency-dependence of the polarized emission
- We alleviate the tension between emission and extinction in the Draine and Li 2007 model by making silicates more emissive at long wavelengths

With a Model, We Can...

 Test the model against the *Planck* sky and learn what drives variations in dust properties

Predict dust properties at all wavelengths given a model fit

 Simulate different realizations of dust properties and the implications for component separation

Conclusions

- Fluctuations in AME/R are uncorrelated with f_{PAH}, casting doubt on the association of AME and PAHs
- Uncovering the nature of the AME is important for understanding microwave foregrounds

 more observations and analyses are needed!
- Our new models of interstellar dust successfully reproduce the mean properties of dust in the diffuse ISM, including in polarization
- The new models enable future work on the properties of Galactic dust as well as next-generation component separation